

To qualify for a Bachelor of Science degree, students must successfully complete a minimum of 120 credits (exclusive of physical education) including the general education requirements, the required courses in the major field, and such additional courses as they may select with the assistance of their faculty advisors to meet the requirements of the major.

General Education Requirements

The general education requirements for graduation in the bachelor of science degree programs are listed below. Specific guidance about the courses that are available to meet the general education requirements will be provided to students in advance of registration. Students are required to meet with their advisors in the selection of their courses.

I. GENERAL EDUCATION COURSES

A. FRESHMAN DEVELOPMENT SEMINAR (FDS)* 0-1
B. HUMANITIES 18

Courses fulfilling the humanities electives include:
humanities, communication, English, French, Spanish, music, theatre, philosophy, or art.

C. MATHEMATICS AND SCIENCE

SCI 100*	The Natural World: The Caribbean	3
MAT 140	College Algebra with Applications	4
or MAT 143**	Precalculus Algebra	

D. SOCIAL SCIENCES

SSC 100* An Introduction to the Social Sciences: A Caribbean Focus 3 and
three other courses in the social sciences:
anthropology, criminal justice, economics, geography, history, political science, psychology or sociology.

[^0]
II. SUMMARY

Mathematics and science 13-16
Social sciences 9-12
TOTAL 43-47

Bachelor of Science Degree

III. OTHER REQUIREMENTS

Students are required to take 0.5 credit hour in physical education for every semester they are full-time students up to the required two credit hours. PLS 200 may also be used to meet this requirement.

Also, students must earn at least 30 of the last 36 credits at the University of the Virgin Islands. This particular requirement may be waived by the provost only in cases where the student must complete the final year(s) of studies in another institution recognized by the University of the Virgin Islands. Course work more than ten years old must be reviewed on a case-by-case basis to determine its appropriateness to the current University course requirements. Appeals should be directed to the provost. In order to graduate, students must earn at least two times as many quality points as registered credits in all their courses as well as in the courses of their major.

Additionally, students must successfully pass the following examinations:

1. ENGLISH PROFICIENCY EXAMINATION (EPE)
2. COMPUTER LITERACY EXAMINATION (CLE)

Please review entry prerequisites for EPE and CLE on page 64.

Degree Majors and Programs - B.S. Degree

Students enrolling in the Bachelor of Science degree programs at the University of the Virgin Islands presently may select as a major field of study one of the following:

SCHOOL OF BUSINESS

Maritime Management

COLLEGE OF LIBERAL ARTS AND SOCIAL SCIENCES

Criminal Justice
Psychology

SCHOOL OF NURSING

Nursing

COLLEGE OF SCIENCE AND MATHEMATICS

Computer Science

The following majors are only offered on the Orville E. Kean Campus.

Applied Mathematics
Biology
Chemistry
Marine Biology
Mathematics

Bachelor of Science Degree

SCHOOL OF BUSINESS

Maritime Management Major

The Bachelor of Science in maritime management is designed to provide expanded career opportunities in the maritime industry by opening doors to shore side management positions that require expertise in business. The business education in combination with expertise and hands on experience in the maritime industry will open doors for long term and sustainable opportunities within the maritime industry to include, ship management, port management, logistics management, brokering, and other maritime trade and sales positions. This degree will allow students to supplement their technical expertise with business acumen needed to participate in or lead a successful business in the maritime industry.

Students pursuing a B.S. in maritime management are required to earn a minimum grade of C in all required courses in maritime management with the prefixes ENT, BUS, ACC, IST, DSC, FIN, MGT and MKT.
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits

SCI 100	The Natural World: The Caribbean	3
SSC 100*	An Introduction to the Social Sciences: A Caribbean Focus	3
FDS 100	Freshman Development Seminar	1

B. Required courses in humanities

Credits
BUS 305 Business Communication 3
ENG 120 English Composition 3
ENG 201 Research and Applied Writing 3
Humanities electives 9
C. Required courses in mathematics and science Credits

MAT $140 \quad$ College Algebra with Applications 4
or
MAT143 Precalculus Algebra 4
and MAT $232 \quad$ Calculus for Business and Social Sciences 4
Science electives 6
(Science elective may be any course under the prefix BIO, CHE, MSC, NSC, PHY, or SCI.)
D. Required courses in social sciences

Credits
Three courses in the social sciences: anthropology, criminal justice, economics, geography, history, political science, psychology or sociology.
E. Students must take a minimum of 34 technical credit hours from a maritime institute or academy.
F. Required courses in business:

Credits
ACC 201 Financial Accounting 3
ACC 202 Management Accounting 3
BUS 351 Business Law 3
BUS 436 Business Strategy 3
DSC 325 Statistics for Management Decisions 3
DSC 430 Production / Operations Management 3

Bachelor of Science Degree

ECO 222 Micro-economics 3
ENT 205 Innovation And Entrepreneurship 3
FIN 301 Fundamentals of Finance 3
IST 210 Business Information Systems 3
MKT 301 Principles of Marketing 3
G. Required courses in management: Credits
MGT 301 Principles of Management 3
MGT 342 Human Resource Management 3
MGT 429 Organizational Behavior 3
MGT 436 International Business Management 3

Bachelor of Science Degree

COLLEGE OF LIBERAL ARTS AND SOCIAL SCIENCES

Criminal Justice Major

The Bachelor of Science in criminal justice is an interdisciplinary program that is designed to prepare students for the many careers in criminal justice and law enforcement and lays the academic foundation for post graduate education and law school. This program covers the study of law enforcement and security procedures, courts and corrections, and criminal justice theory. This degree will teach students the functions of criminal justice organizations and law enforcement procedures. The B.S. degree differs from the B.A. because of its emphasis on the institutions of criminal justice, specifically the police, courts and corrections, forensic science, and crime scene investigations (CSI). Upon graduation, a student will have the knowledge necessary to begin a rewarding career in the field. This program is also designed to qualify those students who are already in the criminal justice and law enforcement fields for promotion to advanced positions. Students should seek advisement from the criminal justice advisor to plan their career path and select appropriate electives and substitutions where available in the paradigm.

Admission to the Criminal Justice Major

1. Achieved a cumulative GPA of 2.33 or higher following the completion of 52 credits of which 30 credit hours must have been taken at UVI.
2. Earned a grade of C+ or better in CJU 110.
3. Complete an application that can be obtained from the registrar's office or program website and submit it to the chair of the social sciences department.

Program Requirements

Students pursuing an A.A.S., B.A. or B.S. in criminal justice are required to earn a minimum grade of C+ in CJU 110, and a C or better in all required criminal justice courses (CJU), except for CJU 250 Criminal Justice Internship in which students must earn a minimum grade of B.

Students declaring this major must meet the following requirements before taking any CJU courses:

1. Completion of WAC and RAC or received a passing grade on the placement exam(s) for entrance into ENG 120
2. Completion of MAT 023 and MAT 024 or received a passing grade on the placement exam(s) for entrance into MAT 140, MAT 143 or MAT 153

Course Requirements

A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):
B. Required courses in the humanities (which will also fulfill general education requirements):

CreditsEnglish Composition3

Bachelor of Science Degree

ENG 201	Research and Applied Writing	3
PHI 200	Critical Thinking	3
SPA 131-132	Functional Elementary Spanish I-II	$4-4$
SPA 231	Intermediate Spanish	4

C. Required courses in the science and mathematics (which will also fulfill general
education requirements):

Credits

MAT $140 \quad$ College Algebra with Applications 4
or MAT $143 \quad$ Precalculus Algebra (MAT 143 recommended) 4
MAT $235 \quad$ Introductory Statistics with Applications 4
BIO 141-142 General Biology I-II 4-4
CHE 151-152 General Chemistry I-II 5-5
D. Required physical education courses Credits
(May be met by physical education courses or personal life skills course) 2
E. Required courses in the social sciences (which will also fulfill general education Credits
requirements):

CJU 110 Introduction to Criminal Justice 3
CJU 205 Administration of Justice 3
CJU 207 Criminal Law 3
CJU 240 Constitutional Law 3
CJU 250 Criminal Justice Internship 3
CJU 325 Police Organization and Administration 3
CJU/POL321 Contemporary Correction 3
CJU 305 Criminal Investigation 3
or
CJU 345 Forensic Science 4
CJU 401 Criminal Justice Research Methods and Analysis 4
CJU $432 \quad$ Criminal Procedure and Evidence 3
HIS 341 Caribbean History 3
or
HIS $342 \quad$ History of the Virgin Islands 3
POL $120 \quad$ Introduction to Political Science 3
POL 129 Introduction to Public Administration 3
PSY 120 General Psychology 3
or
SOC 121 Introduction to Sociology 3
SOC 333/CJU 333 Criminology 3
SSC 327-328 Quantitative Research Methods in the Social Sciences 4-4
SSC 497-498 Social Sciences Senior Seminar I-II 1-1
F. Elective courses for the criminal justice major:

Nine credits of electives are required. Students in the BS in criminal justice will choose a minimum of 6 credits at the three hundred level or above from among the following:

- Biology
- Chemistry
- Criminal justice
- Economics

Bachelor of Science Degree

- Marine biology
- Mathematics
- Political science
- Psychology
- Physics
- Science

Psychology Major

A Bachelor of Science degree with a major in psychology is offered for preprofessional students who intend to pursue graduate studies. This degree program is challenging and should be attempted only by students with special talents in experimental psychology.
Bachelor of Science in psychology degree students must successfully complete a minimum of 120 credits. Specific guidance about the courses that are available to meet general education requirements and the selection of electives will be provided to students in advance of registration. Students are required to meet with their advisors in the selection of their courses.

The following courses, which include general education courses, are required for the Bachelor of Science degree in psychology.
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
FDS 100 Freshman Development Seminar 1
B. Required courses in the humanities:

Credits
COM 119 Interpersonal Communication and Leadership Skills 3
ENG 120 English Composition 3
ENG 201 Research and Applied Writing 3
ENG $300 \quad$ Scientific Writing 3
Humanities electives 6
C. Required courses in science and mathematics: Credits

MAT 143 Precalculus Algebra* 4
or MAT 241 Calculus 4
MAT 235 Introductory Statistics with Applications 4
BIO 295 Responsible Conduct in Research 1
*A student exempted from Precalculus Algebra by a qualifying examination must take advanced mathematics courses to meet the minimum 8 mathematics credit requirement.
D. Required courses in the social sciences:

Credits
Social science electives (anthropology, criminal justice, economics, geography, history, political science or sociology)

Bachelor of Science Degree

E. Required physical education courses: Credits
(May be met by physical education courses or personal life skills course) 2
F. Required courses psychology and social sciences: Credits
PSY $120 \quad$ General Psychology 3
PSY 202 Life Span Development 3
PSY 203 Introduction to Personality 3
PSY 240 Biopsychology 4
PSY 304 Cognitive Psychology 3
PSY 312 Psychology of Learning 3
PSY 340 Behavioral Neuroscience 3
PSY 348 Sensation and Perception 3
PSY $350 \quad$ Drugs, Behavior and Society 3
PSY 434 Abnormal Psychology 3
PSY 440 Applied Research Methods 3
PSY 496 Practicum in Psychology 3
SSC 327-328 Quantitative Research Methods in the Social Sciences 4-4
SSC 497-498 Social Sciences Senior Seminar 1-1
Total 47
G. Psychology electives (minimum of 18 credits of any other psychology course): Credits
Total 18
H. Other electives: Credits
Any other courses in biology, chemistry, computer science, mathematics, or physics 15

Bachelor of Science Degree

SCHOOL OF NURSING

Mission

The School of Nursing, in a learner-focused and multi-cultural environment, educates and empowers its graduates to meet the health needs of individuals, families and communities, with a focus on the U.S. Virgin Islands, the Caribbean and the world. Faculty strive for excellence through rigorous academic standards, innovative teaching strategies, research and community engagement.

Accreditation

The Bachelor of Science in nursing degree in the School of Nursing is accredited by the Accreditation Commission for Education in Nursing, 3343 Peachtree Rd NE, Suite 850, Atlanta GA, 30326, (404) 975-5000; Fax (404) 975-5020.

Programs

The School of Nursing offers a nursing major and has two tracks for completion of the Bachelor of Science degree in nursing (BSN): the generic program and a BSN Completion Program. One hundred and twenty-five (125) credits (at least four years) are required to complete the BSN degree.

Generic BSN Program

The generic BSN Program is designed to prepare the student to pass the National Council Licensure Examination for Registered Nurses (NCLEX-RN), a requirement for obtaining a license to practice as a registered nurse in a United States (U.S.) jurisdiction. Prospective students should be aware that the U.S. Virgin Islands Board of Nurse Licensure (VIBNL) requires a Social Security number for one to be eligible to take the NCLEX-RN exam in the U.S. Virgin Islands. Graduates may be able to sit the NCLEX-RN exam in another U.S. jurisdiction. Licensure requirements may vary by state. Students should contact the Board of Nursing in the jurisdiction in which they plan to practice. Contact information can be retrieved at the National Council of State Boards of Nursing website (http://www.ncsbn.org).

Applicants intending to study nursing are expected to have completed a rigorous college preparatory program of study in high school, including four years of English or the equivalent, two years of college preparatory mathematics, one year of biology and one year of general chemistry.

The BSN degree is a four-year degree program requiring at least 125 credits, with 66 credits in nursing. At least three semesters of full-time study are required prior to entry into the nursing program. Students who need pre-college classes, such as remedial English and/ or reading (ENG 100/WAC011; ENG101/RCA021) and/or remedial mathematics (MAT 023 and MAT 024), may need more than three semesters to complete all required pre-nursing courses. Nursing coursework typically begins in the spring semester of the sophomore year.

BSN Completion Program

The BSN Completion Program is cohort-driven and a minimum of 10 students is necessary to begin a new cohort. The program is open to graduates of associate degree and diploma nursing programs who want to complete the Bachelor of Science in nursing.

In addition to general education requirements, nine nursing courses (26 credits) are required for the BSN Completion Program. These courses can be completed in three or more semesters. Recent graduates of accredited associate degree programs may receive 40 credits for course work already completed in the pre-licensure program.

There are three categories of BSN Completion applicants: graduates of U.S. accredited nursing schools, graduates of U.S. non-accredited nursing schools, and graduates of foreign
nursing schools. Requirements differ so applicants are urged to review information carefully and to speak to a nursing advisor before applying.

Admission to the BSN Program

To qualify for admission to the BSN Program, all applicants must be accepted to UVI and have a cumulative GPA of 3.0 for full time admission to the BSN Program.

Generic applicants must have successfully completed, or be enrolled in:

1. Freshman studies courses, including FDS 100, SCI 100 and SSC 100. Transfer applicants with more than 24 credits are exempted;
2. General education courses, including COM 119, ENG 120, ENG 201, HSC 100, MAT 140, MAT 235, PSY 120, PSY 202;
3. BIO 151, BIO 152, BIO 240 with grades of " C " or better (online courses and courses without a laboratory component are not accepted);
4. Computer Literacy Examination (unless exempt);
5. Test of Essential Academic Skills (TEAS) from Assessment Technologies Institute with a score of "proficient" or better. A score of 60\% is required on the science component of the TEAS. The TEAS is administered by UVICELL. Applicants from other locations can check www.atitesting.com for information about testing in other locations.

Transfer applicants who have been enrolled in another nursing program and who wish to transfer into the BSN Program must contact the administrator of the previous institution and request that a letter be mailed directly to the dean of the School of Nursing indicating their academic standing and eligibility for re-admission. In addition, an interview with the admissions committee may be required.

Admission to the BSN Completion Program

BSN Completion Program applicants must be licensed as a registered nurse (RN) or be graduates of accredited associate degree or diploma programs. Program completion must have been within the last four (4) years.

Graduates of foreign nursing schools must have a current, unencumbered license in one of the United States or U.S. territories to qualify for admission. All RNs must submit proof of licensure.

Unlicensed nurses who are accepted must enroll in NUR 433: NCLEX Preparation and subsequently pass the licensure exam. Proof of licensure is required prior to the beginning of the next semester. Unlicensed nurses who do not pass the licensure exam may not continue and must re-apply to the BSN Completion Program once licensed.

If an unlicensed BSN Completion applicant is nearing the end of NCLEX-RN eligibility in the U.S. Virgin Islands and there are an insufficient number of students to begin a new cohort, then the applicant is strongly advised to enroll in NUR 433: NCLEX Preparation or some other NCLEX preparation course.

Applicants who are graduates of accredited U.S. nursing schools will receive a maximum of 40 credits for the following courses: NUR 104, NUR 208, NUR 308, NUR 318, NUR 319, NUR 321, NUR 323, NUR 417, NUR 433 and PLS 200. Credits will be held in escrow until successful completion of NUR 418 and then added to students' transcripts.

Applicants who are graduates of non-accredited nursing schools and graduates who are not eligible to take the NCLEX-RN exam due to length of time since graduation must sit challenge exams. These exams, offered by the School of Nursing and the National League for Nursing (NLN) Assessment Technology Incorporated (ATI) are proctored and also require faculty

Bachelor of Science Degree

clinical evaluations, as appropriate. The following is the policy on Advanced Placement/Prior Learning Assessment.

Bachelor of Science in Nursing (BSN) Program

A successful challenge of a nursing course is defined as satisfactory completion of both the required test, respective ATI proctored examination if relevant, and faculty clinical evaluation. The NLN pass mark deemed acceptable by UVI SON is 74% and the pass mark of faculty prepared tests is 75% per SON policy. Students who are unsuccessful on any required test or respective ATI proctored examination, if relevant, must take the course. The table entitled
NLN RN Achievement Exams and Equivalent BSN Courses and Credit displays the challenge test, the course equivalent and the number of credits for each.

NLN RN Achievement/ Faculty Prepared Exams and Equivalent BSN Courses and Credit

Test
NLN Basic Nursing Care I \& II
NLN Physical Assessment
NLN Pharmacology in Clinical Nursing
NLN Nursing Care of Adults I
Faculty Prepared Exam
NLN Comprehensive Psychiatric Nursing
NLN Nursing Care of Adults II
NLN Nursing the Childbearing Family
NLN Nursing Care of Children

UVI Course Equivalent Credit
NUR 208* Fundamentals of Nursing 6
NUR 209* Health Assessment 3
NUR 229 Pharmacology in Nursing 3
NUR 308* Adult Health I 6
NUR 311 Pathophysiology 3
NUR 318* Mental \& Behavioral Health 4
NUR 319* Adult Health II 6
NUR 321* Maternal \& Newborn Nursing 4
NUR 323* Pediatric Nursing 4
*One comprehensive clinical evaluation will be conducted following successful challenge of the theory component of courses with clinical requirements.

Challenge exams are also available for BIO 151/152 and BIO 240. Applicants will have two opportunities to take the challenge exams. Upon successful completion of challenge exams and payment of required fees, credits will be granted on the applicant's UVI transcript.

BSN Completion Program applicants must have successfully completed, or be enrolled in:

1. General education courses, including COM 119, ENG 120, ENG 201, HSC 100, MAT 140, MAT 235, PLS 200, PSY 120, and PSY 202.
2. BIO 151, BIO 152 and BIO 240 with grades of " C " or better. (Online courses and courses without a laboratory component are not accepted.)

Drug dosage calculation competency is a requirement for all BSN Completion Program students. All applicants who are accepted will be given a comprehensive exam prior to the beginning of NUR 210 which must be passed with a grade of 90% or better. Study materials are posted on the School of Nursing website. Two opportunities to pass are permitted. Those scoring $<90 \%$ on the exam are required to register for, and pass, NUR 104.

The following are additional eligibility requirements to graduate from UVI unless exempted:

1. Computer Literacy Examination (CLE);
2. English Proficiency Examination (EPE).

Application Process

Admission to the University is a prerequisite for admission into the nursing program but does not guarantee acceptance into the BSN Program. All prospective BSN students must submit a separate application packet to the School of Nursing by October 15th, either in person or by mail. Application forms may be downloaded from the School of Nursing website or may be requested from the School of Nursing.

Applications for the Orville E. Kean Campus should be addressed to:
University of the Virgin Islands, School of Nursing
\#2 John Brewers Bay
St. Thomas, U.S. Virgin Islands 00802-9990
Applications to the Albert A. Sheen Campus should be addressed to:
University of the Virgin Islands, School of Nursing
RR1, Box 10,000
Kingshill, St. Croix
U.S. Virgin Islands 00850-9781

The application packet should include the following:

1. Application form
2. Official transcripts - UVI students currently enrolled may submit an unofficial UVI transcript.
3. Copy of immunization record with COVID-19 immunization included.
4. Results of TEAS (all applicants except BSN Completion). Minimum proficiency level is required. Effective intake of 2022, the science portion of the TEAS will require a 60% score.
5. Two (2) letters of recommendation from professors or supervisors from place of employment.
6. Writing sample: a one-page essay on the following topic: "Nursing: My Career of Choice". Write this essay in a minimum of three paragraphs with at least one citation. Font: Times New Roman, font size 12, line spacing 1.5, citations and references must be in APA format.
7. Official letter of good standing from the applicant's previous university or nursing program(s). This letter must indicate the applicant is in good standing and eligible for readmission.
8. Copy of RN license (BSN Completion Program applicants).

Deadline for submission: September 30.

Selection and Notification of Applicants

Admission to the Generic BSN Program is competitive and based on a point system. Enrollment is limited and applicants with the most points will be selected for admission. Points are awarded to applicants for grades in prerequisite courses, performance on the TEAS test, current enrollment at UVI and a bachelor's degree in another field.

Admission to the BSN Completion Program is open to nurses who meet the prerequisites and complete the application process.

Bachelor of Science Degree

Applicants to the BSN Program will be notified of acceptance, or conditional acceptance, by November 15th. Required courses in progress at the time of application must be completed successfully in order to begin the program. All applicants who are accepted into the BSN Program will have to submit documentation that meets clinical agency requirements, including a criminal background check and drug screen, immunization record and certification in CPR for healthcare professionals.

Progression Requirements for Generic and BSN Completion Program Students

In order to progress in a BSN program, students must:

1. Earn at least a "C" grade in all nursing courses, except for NUR 104 and NUR 433;
2. Earn at least a grade of "A-" in NUR 104 and NUR 433;
3. NCLEX Preparation (BSN Completion Program students may be exempt from these courses);
4. Score 90% or better by the third attempt on the Drug Dosage Calculation exam given each semester (if applicable); and

Bachelor of Science Degree

5. Maintain an overall GPA of " C " (2.0).

Within the School of Nursing, a "C" grade is defined as 75%. A student may only repeat two (2) nursing courses. Students repeating nursing courses must register during the advising and registration period to ensure a place in that course. The third failure of a nursing course results in dismissal from the program.

Returning Students

Students in good standing in the School of Nursing who have an interruption in their nursing education must meet the current admission, progression and graduation requirements and notify the dean of the School of Nursing in writing of their desire to return by October 15 for the spring semester and by March 15 for the fall semester. Returning students are required to meet with their advisor and, if eligible, register during the advisement/registration period to communicate their intent to return to the School of Nursing. Failure to register in advance means that the student forfeits their opportunity to secure a place in the course(s).

Nursing Major

Generic BSN

At least 125 credits are required to complete the BSN, with 66 credits in nursing. There may be some flexibility with general education course sequencing, but nursing courses must be taken as shown in the paradigm located in the School of Nursing Student Handbook, which is found on the UVI website, under "Academics", then "School of Nursing" then "Documents". Please note that many nursing courses and general education courses are only offered once per year. For further information regarding prerequisites, see the course description section of the UVI Catalog.

The following courses, which include the general education courses, are required for the BSN degree.
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
FDS $100 \quad$ Freshman Development Seminar 1
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
B. Required courses in the humanities:

Credits
COM 119 Interpersonal Communication and Leadership Skills 3
ENG 120 English Composition 3
ENG 201 Research and Applied Writing 3
FRE 131-132 Functional Elementary French I-II 4-4
or SPA 131-132 Functional Elementary Spanish I-II 4-4
Humanities elective 3
C. Required courses in science and mathematics: Credits

BIO 151-152 Human Anatomy and Physiology I-II 4-4
BIO 240 Microbiology 4
MAT $140 \quad$ College Algebra with Applications 4
or MAT 143 Precalculus Algebra 4
MAT 235 Introductory Statistics with Applications 4
D. Required courses in the social sciences:

Credits

Social science elective: 3
PSY 120 General Psychology 3
PSY 202 Life Span Development 3
E. Other required courses: Credits

HSC 100 Medical Terminology 1
PLS $200 \quad$ Self Management: Wellness and Risk (satisfies PE requirement) 2
F. Required courses in nursing: Credits

NUR 208 Fundamentals of Nursing 6
NUR 209 Health Assessment 3
NUR $229 \quad$ Pharmacology in Nursing 3
NUR $308 \quad$ Adult Health Nursing I 6
NUR $311 \quad$ Pathophysiology 3
NUR $318 \quad$ Mental/Behavioral Health Nursing 4
NUR $319 \quad$ Adult Health Nursing II 6
NUR 321 Maternal Newborn Nursing 4
NUR 322 Evidence-Based Practice 3
NUR 323 Pediatric Nursing 4
NUR $417 \quad$ Adult Health Nursing III 6
NUR 418 Community Health Nursing 4
NUR $421 \quad$ Nursing Leadership \& Issues 5
NUR 432 Senior Clinical Practicum 5
NUR 433 NCLEX Preparation 2

BSN Completion Program

At least 125 credits are required for the BSN, including general education credits, earned nursing credits and credits granted to nurses for prior learning. In addition to courses already completed, students who are recent graduates of the ASN Program are required to take the following:

Credits
COM 119 Interpersonal Communication and Leadership Skills 3
MAT $140 \quad$ College Algebra with Applications 4
MAT 235 Introductory Statistics with Applications 4
Foreign language: two semesters 4-4
Humanities elective 3
Social science elective 3
Eight nursing courses (26 credits) are required for the BSN Completion Program. These courses can be completed in three or more semesters.

Nursing courses required for BSN Completion Program for RNs:
Credits
NUR 209 Health Assessment 3
NUR $210 \quad$ Bridge to Professional Nursing 2
NUR 229 Pharmacology 3
NUR 322 Evidence-Based Practice 3
NUR 311 Pathophysiology 3
NUR 418 Community Health 4
NUR 421 Leadership 5
NUR 434 RN Clinical Practicum 3
Total credits in nursing 26
Recent ASN graduates will receive 40 credits for NUR 104*, NUR 208, NUR 308, NUR 318, NUR 319, NUR 321, NUR 323, NUR 417, NUR 433**, and PLS 200. Credits will be held in

Bachelor of Science Degree

escrow until successful completion of NUR 418 and then added to the student's transcript.
*Drug dosage calculation competency required: Drug dosage calculation competency is a requirement for all BSN Completion students. During orientation week, BSN Completion students will be given a comprehensive exam, which must be passed with a grade of 90% or better. Two additional opportunities to test will be offered during the first week of classes. Those scoring <90\% on the exam are required to register for NUR 104 along with NUR 210. BSN Completion students will also be tested in NUR 434.
**RN license required: Unlicensed nurses who are accepted must enroll in NUR 433 and pass the licensure exam. Proof of licensure is required prior to the beginning of the next semester. Unlicensed nurses may not continue and must re-apply to the BSN Program once licensed.

COLLEGE OF SCIENCE AND MATHEMATICS

A Bachelor of Science degree with majors in biology, chemistry, computer science, marine biology or mathematics is offered for preprofessional students who intend to pursue graduate studies. A Bachelor of Science in applied mathematics is offered to students who complete the dual degree engineering programs. These degree programs are challenging and should be attempted only by students with special talents in science.

The biology major provides a firm foundation in biology and cognate sciences while allowing students to specialize within a field of interest (e.g., zoology). The marine biology major requires that a broad base in the biological and physical sciences be acquired and applied in the study of marine environments. The course of study results in a level of preparation difficult to obtain elsewhere at the bachelor's level.

The chemistry program provides a strong background in chemistry with grounding in physics and mathematics. With the proper choice of electives the student can design a curriculum with sub-specialization in biology, marine biology, computer science, engineering, mathematics or physics. It is suitable for students wishing higher degrees in chemistry, biochemistry or related fields.

A computer science major is offered for students who plan on starting a professional career in computer science immediately after graduation or for students who intend to pursue graduate studies. The program provides a strong professional foundation in computer science, mathematics and science, and includes electives which can be selected to provide exposure to an application area in science or computer information systems. It is suitable for students seeking employment in the computing industry and for students seeking an understanding of how computers and their applications evolve.

The mathematics major requirements accommodate a wide variety of interests and career goals. The courses provide broad training in undergraduate mathematics, preparing majors for graduate study, for positions in government, industry and the teaching profession. While students must consult with their advisors in designing appropriate courses of study, three suggested tracks in the description of the major, as well as a concentration in computer science are offered. The concentration in computer science is recommended for those students interested in graduate study in applied mathematics (e.g. numerical analysis), as well as for those students interested in teaching.

The Bachelor of Science programs in biology, chemistry with physics or marine biology are good preparations for students interested in careers in the health sciences. Interested students should seek details of a cooperative program with Boston University School of Medicine, together with other cooperative programs which may be available, from the dean of the college.

Prospective majors should consult their academic advisors and carefully evaluate the demands of these programs before deciding to pursue a B.S. degree. The approximately 20 -credit difference in general education requirements between B.S. degrees and B.A. degrees is more than compensated by increased requirements in science and mathematics in the B.S. programs. Not only are more science and mathematics credits required for the B.S. degrees, but the additional required courses are at more advanced and challenging levels.

Applied Mathematics Major (3-2 Engineering Program)

The Bachelor of Science in applied mathematics is available only for students who complete the dual degree or 3-2 engineering program. Through this program, students

Bachelor of Science Degree

spend approximately three years at the University of the Virgin Islands and two years at a participating institution. At the end of the program, the student receives a Bachelor of Science in applied mathematics from the University of the Virgin Islands, and a Bachelor of Science in his or her chosen field of engineering from the affiliated university. (A student may also opt to complete another existing UVI bachelors degree by completing all those requirements before enrolling at the affiliated university for the B.S. in engineering.) The University of the Virgin Islands has agreements with Columbia University and Washington University in St. Louis. The dual degree program offers a great deal of flexibility to students. Students follow a course of studies similar or identical to those taken by many of our science majors, while adding certain required courses. Many pre-medicine majors can also prepare for engineering by adding a few courses to their normal curriculum. A well-planned curriculum will open up many options to those students who begin in the dual degree engineering program. Interested students should consult with the engineering liaison officer early in their college career.

Applied Mathematics Major

In addition to the general education requirements (see pp. 144-145), the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
FDS 100 Freshman Development Seminar 1
B. Required courses in mathematics: Credits
MAT 241-242 Introductory Calculus I-II 4-4
MAT 261 Linear Algebra 4
MAT 341-342 Intermediate Calculus I-II 3-3
MAT 346 Differential Equations 4
MAT 397, 398* Junior Mathematics Seminar 1/2, 1/2
*SCl 497 may be taken in place of MAT 398.
C. Required courses in related fields:Credits
CHE 151-152 General Chemistry I-II 4-4
CHE 151L-152L General Chemistry Lab I-II 1-1
PHY 241-242 General Physics 5-5
PHY 341 Modern Physics 3
CSC 117 Intro. To Programming I 4
ECO 221 Intro. To Macro-Economics 3
D. In addition to the required courses, the student is strongly recommended to take more courses in his/her chosen field of specialization:
Field of Specialization Suggested Courses Credits
Biomedical Engineering BIO 141-142 4-4
Biology courses numbered above 200
Chemical Engineering Chemistry courses numbered above 200

Computer Engineering	MAT 223 (Discrete Mathematics)	3
	MAT 325 Numerical Methods	3
	CSC 118 Intro to Programming II	4
	CSC 242 Data Structures	4
CSC course		
Mechanical Engineering	Physics courses numbered above 200	
Electrical Engineering	Physics courses numbered above 200	3
Applied Mathematics	MAT 233 Discrete Mathematics	4
	MAT 325 Numerical Methods	3
	MAT 332 Mathematical Statistics	3

Biology Major

The requirements for a Bachelor of Science degree in biology consist of the following biology and related courses plus a study plan written by each candidate and his or her program advisor. Study plan guidelines and procedures will be published by the College of Science and Mathematics from time to time. The study plan must be approved by the faculty of the biology program and will be submitted to the Office of Enrollment Services. Course numbering reflects the year by which courses should be completed. The study plan must include at least one plant-based^${ }^{\wedge}$ and one animal-based* course. Any change in the study plan must be approved by the advisor and the program prior to course registration. In addition to fulfilling the general education requirements for a Bachelor of Science degree, students must pass a science comprehensive examination following completion of formal academic course work and prior to graduation.

In addition to the general education requirements (see pp. 144-145), the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
FDS $100 \quad$ Freshman Development Seminar 1
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
B. Required courses in biology (24 credit hours): Credits

BIO 141-142 General Biology I-II 4-4
BIO 223 Ecology 4
BIO 245 Genetics 4
BIO $360 \quad$ Cell and Molecular Biology I 4
BIO 365 Junior Biology Seminar 2
or BIO 397-398 Junior Science Seminar I-II 1-1
BIO/MBI 497, 498* Senior Science Seminar I, II 1,1
C. Required courses in related fields (36-38 credit hours): Credits

CHE 151-152 General Chemistry I-II 4-4
CHE 151L-152L General Chemistry Lab I-II 1-1
CHE 253-254 Organic Chemistry I-II 4-4
CHE 253L-254L Organic Chemistry Lab I-II 1-1
MAT 241-242 Introduction to Calculus and Analytical Geometry I-II $4-4$

Bachelor of Science Degree

PHY 211-212	Introduction to Physics I-II	$4-4$
or PHY 241-242	General Physics I-II	$5-5$

or PHY 241-242
or PHY 241-212
General Physics I-II 5-5
General Physics I - Introduction to Physics II 5-4
D. Science, technology and mathematics (STEM) electives:

An additional 30 credit hours minimum are required from the following:
Credits
BIO 210 Research Methods I 2
BIO 220** Marine Invertebrate Zoology 5
BIO 224 Population Biology 4
BIO 295 Responsible Conduct in Research 1
BIO 310 Research Methods II 2
BIO 339** Vertebrate Structure 5
BIO 342** Animal Physiology 4
BIO 349^ Aquatic Plant Biology 4
BIO 350^ Terrestrial Plant Biology 4
BlO 352^ Plant Physiology 4
BlO 353** Developmental Biology 3
BIO 355-356 Biology of Microorganisms I-II 4-4
BlO 361 Bioinformatics 4
BIO 370 Evolution 3
BIO $430 \quad$ Coral Reef Biology 4
BIO $460 \quad$ Cell and Molecular Biology II 4
BIO 465, 466*** Selected Topics in Biology 3, 4
BIO $495 \quad$ Directed Independent Research in Biology
(maximum 6 credits)1-4

BIO $496 \quad$ Internship/Field Studies (maximum 4 credits) 1-4
Any MBI or MSC course
Any 200, 300 or 400 level chemistry, math or physics course except MAT 232
Any ENV course
SCI 100 (if taken as a freshman), The Natural World: The Caribbean
SCI 220 Introduction to Geographic Information System
Any CSC course except CSC 111 or CSC 119
STE 110 and/or STE 112
*SCl 497 may be taken in place of either BIO 497 or 498
.**Animal-based course.
\wedge Plant-based course.
***Depending on content, a Selected Topics in biology may count as a plant- or animalbased course.

Concentration in Computational Biology

Students earning the Bachelor of Science degree in biology may or may not also elect to complete a concentration in computational biology. This interdisciplinary concentration will prepare students to participate in new frontiers of research in which gigantic volumes of data are analyzed to seek answers to questions in molecular, medical, and environmental biology. The requirements to complete the concentration in computational biology include all of the requirements for the Bachelor of Science degree in biology plus the following:

Bachelor of Science Degree

Students must complete the following courses in partial fulfillment of the Section D science electives requirement:

Credits

CSC 117-118	Introduction to Programming I-II	$4-4$
CSC 242	Data Structures	4
MAT 261	Linear Algebra	4
MAT 352	Mathematical Modeling	3
BIO/CSC/MAT 361	Bioinformatics	4

Chemistry Major

In addition to the general education requirements (see pp. 144-145), the following courses are required:

A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):
 Credits

FDS 100	Freshman Development Seminar	1
SCI 100	The Natural World: The Caribbean	3
SSC 100	An Introduction to the Social Sciences: A Caribbean Focus	3

B. Required courses in chemistry:

CHE 151-152 General Chemistry I-II 4-4
CHE 151L-152L General Chemistry Lab I-II 1-1
CHE 251 Quantitative Analysis 2
CHE 251L Quantitative Analysis Lab 2
CHE 252 Instrumental Analysis 2
CHE 252L Instrumental Analysis Lab 2
CHE 253-254 Organic Chemistry I-II 4-4
CHE 253L-254L Organic Chemistry Lab I-II 1-1
CHE 341-342 Physical Chemistry I-II 3-3
CHE 341L-342L Physical Chemistry Lab I-II 1-1
CHE 397,398 Junior Science Seminar I, II 1/2,1/2
CHE $432 \quad$ Inorganic Chemistry 3
CHE 432L Inorganic Chemistry Lab 1
CHE 497,498* Senior Science Seminar I, II 1,1
Subtotal 43
*SCl 497 may be taken in place of CHE 498.
C. Required courses in mathematics: Credits

MAT 143-153** Precalculus Algebra and Trigonometry 4-4
MAT 241-242** Introduction to Calculus and Analytical Geometry I-II 4-4
MAT 341-342** Intermediate Calculus I-II 3-3
Subtotal 22
${ }^{* *} A$ student may be exempted from MAT 143-153 by a qualifying examination.
D. Required courses in physics:

Credits
PHY 241-242 General Physics I-II 5-5
PHY 341 Modern Physics 3
PHY $351 \quad$ Modern Physics Laboratory 1
Subtotal 14

Bachelor of Science Degree

E. Science electives: An additional 21 credits in science, mathematics, engineering, or computer science are required from the following:

Any biology course
300 or 400 level chemistry courses
200, 300 or 400 level mathematics courses except MAT 232
Any computer science course except CSC 111
Any 200 level engineering courses
300 level physics courses
F. The following courses are strongly recommended in partial fulfillment of the requirements in Section D:

BIO $245 \quad$ Principles of Genetics 4
CHE $348 \quad$ Biochemistry 4
CHE 348L Biochemistry Lab $\quad 1$
CHE $465 \quad$ Selected Topics in Chemistry 3
CHE $495 \quad$ Directed Independent Research 1-4
MAT 346 Differential Equations 3
G. Pre-medical students are advised to take: Credits
$\begin{array}{llr}\text { BIO 141-142 } & \text { General Biology I-II } & 4-4 \\ \text { BIO 245 } & \text { Principles of Genetics } & 4 \\ \text { CHE 348 } & \text { Biochemistry } & 4 \\ \text { CHE 348L } & \text { Biochemistry Lab } & 1\end{array}$

Computer Science Major

In addition to the general education requirements (see pp. 145-146), the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
FDS $100 \quad$ Freshman Development Seminar 1
SCI 100 The Natural World: The Caribbean 3
SSC $100 \quad$ An Introduction to the Social Sciences: A Caribbean Focus 3
B. Required courses in computer science: Credits

CSC 117 Introduction to Programming I 4
CSC 118 Introduction to Programming II 4
CSC 241 Introduction to Computer Architecture and Digital Systems 4
CSC 242 Data Structures 4
CSC 243 Digital Communications and Networks 4
CSC 245 Databases and Information Retrieval 3
CSC $310 \quad 3$
CSC 333 Programming Languages 3
CSC 397,398 Junior Science Seminar I, II 1/2,1/2
CSC $410 \quad$ Principles of Operating Systems 3
CSC 420 Software Engineering 4
CSC 497,498* Senior Science Seminar I, II 1,1
*SCl 497 may be taken in place of CSC 498.

Bachelor of Science Degree

C. An additional 15 credits chosen from 200-400 level elective courses in CSC, MAT, BIO, CHE, PHY, or CIS. No more than six of the elective credits can come from outside of CSC. Any 200 -level credits must come from the College of Science and Mathematics, are limited to a total of six credits, and may not include MAT 232. A maximum of three credits of CSC 496 (Internship/Field Studies) can be applied to this elective requirement.
D. Required courses in mathematics:

Credits
MAT 215 Introduction to Number Theory 3
MAT 233 Discrete Mathematics 3
MAT 235 Introductory Statistics with Applications 4
MAT 241 Introduction to Calculus and Analytical Geometry I 4
MAT 242 Introduction to Calculus and Analytical Geometry II 4
MAT 261 Linear Algebra 4
E. One of the following science sequences is required:** Credits

BIO 141-142	General Biology I-II	$4-4$
CHE 151-152	General Chemistry I-II	$4-4$
CHE 151L-152L	General Chemistry Lab I-II	$1-1$
PHY 241-242**	General Physics I-II	$5-5$

**Partially satisfies the general education requirement in science and mathematics.
Note: It is recommended that students with an interest in computer engineering or robotics take the PHY 241-242 sequence, and that students with an interest in medical technology and computing take the BIO 141-142 sequence.

Concentration in Computational Biology

Students pursuing a Bachelor of Science in computer science may or may not also elect to complete a concentration in computational biology. This interdisciplinary concentration will prepare students to participate in new frontiers of research in which gigantic volumes of data are analyzed to seek answers to questions in molecular, medical, and environmental biology. The requirements to complete the concentration in computational biology include all of the requirements for the B.S. computer science major, except one noted below, plus the following:

Students must complete the following course in partial fulfillment of the Section D mathematics electives requirement:

Students must complete the following courses in partial fulfillment of the Section E science electives requirement:

Students must complete the following courses in fulfillment of the Section F supporting discipline requirement:

Credits
BlO 223 Ecology 4
BIO 245
Principles of Genetics
4
BIO/CSC/MAT 361
Bioinformatics
4

Bachelor of Science Degree

Students need to complete only 3 credits from among the 300- or 400-level electives in Section C, instead of the 6 credits required for non-computational biology computer science majors.

Cybersecurity Concentration

Students earning the Bachelor of Science in computer science may elect to complete a concentration in cybersecurity. As a formal discipline, cybersecurity incorporates related technical and non-technical disciplines, including but not limited to software development, information systems and technology (IS/IT), mathematics, ethics and compliance, policy and governance, forensics, personnel, incident response, and risk management. Our daily lives are connected to the extent that nearly every crime includes a digital component. Malicious actors compromise data and violate privacy, manipulating the lives of individuals and entire user populations. Cybersecurity professionals possess the knowledge, skills, and abilities (KSAs) to protect and defend digital systems and data, to detect and identify malicious activities, to preserve and analyze digital evidence, to mitigate related impacts, and to ensure accountability and justice.

This concentration prepares students for entry-level cybersecurity roles in the workplace, advanced studies and research in this discipline, and industry certifications now required for many lucrative job opportunities. Nine credits of core requirements are completed with three courses: CSC 220 Introduction to Cybersecurity, CSC 343 Digital Forensics, and CSC 353 Systems Security. In addition, students identify a specialty focus and engage six (6) credits of elective options to complete the concentration with approval of the academic advisor and program chair. A specialty focus may include traditional or emerging interests such as advanced forensics, incident handling, penetration testing, encryption, ethics and compliance, or a general preparation for industry certifications (e.g., CompTIA CySA+, SANS Security Essentials).

The requirements to complete the concentration in cybersecurity include the three core courses shown below. In addition to the required courses, six credit hours of elective studies related to a cybersecurity focus must be completed using any of the listed options.

Required courses:
Credits
CSC 220
Introduction to Cybersecurity
3
CSC 343 Introduction to Digital Forensics 3
CSC 353 Systems Security 3

Elective options:
*Approved by faculty chair as appropriate cybersecurity topic.

Marine Biology Major

The requirements for a Bachelor of Science degree in marine biology consist of the following biology, marine biology and related courses plus a study plan written by each candidate and his or her program advisor. Study plan guidelines and procedures will be published by the College of Science and Mathematics from time to time. The study plan must be approved by the faculty of the biology program and will be submitted to the Office of Enrollment Services.

Bachelor of Science Degree

Course numbering reflects the year by which course should be completed. Any change in the study plan must be approved by the advisor and the program prior to course registration. In addition to fulfiling the general education requirements for a Bachelor of Science degree, students must pass a science comprehensive examination following completion of formal academic coursework and prior to graduation.

In addition to the general education requirements (see pp. 145-146), the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
FDS $100 \quad$ Freshman Development Seminar 1
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
B Required courses in biology and marine biology (45 credit hours): Credits
BIO 141-142 General Biology I-II 4-4
BIO 223 Ecology 4
BIO 245 Genetics 4
BIO 349 Aquatic Plant Biology 4
BIO $360 \quad$ Cell and Molecular Biology I 4
$\mathrm{BIO} / \mathrm{MBI} 365 \quad$ Junior Biology Seminar 2
or BIO/MBI 397-398 Junior Science Seminar 1-1
BIO/MBI 497, 498* Senior Science Seminar I, II 1,1
MBI $220 \quad$ Marine Invertebrate Zoology 5
MBI 222 Ichthyology 4
MBI $424 \quad$ Marine Ecology 4
MSC 239 Oceanography 4
*SCl 497 may be taken in place of either BIO 497 or 498.
C. Required courses in related fields (30-32 credit hours): Credits

CHE 151-152 General Chemistry \quad 4-4
CHE 151L-152L General Chemistry Lab I-II 1-1
MAT $245 \quad$ Statistics for the Life Sciences 4
MAT 241-242 Introduction to Calculus and Analytical Geometry I-II 4-4
PHY 211-212 Introduction to Physics I-II 4-4
or PHY 241-242 General Physics I-II 5-5
or PHY 241-212 General Physics I - Introduction to Physics II 5-4
D. Science, technology and mathematics (STEM) Electives: An additional 15 credit hours minimum are required from the following:

BIO 210 Research Methods I 2
BIO $224 \quad$ Population Biology 4
BIO $295 \quad$ Responsible Conduct in Research 1
BIO 310 Research Methods II 2
BIO $339 \quad$ Vertebrate Structure 5
BIO 342 Animal Physiology 4
BIO $350 \quad$ Terrestrial Plant Biology 4
BIO $352 \quad$ Plant Physiology 4
BIO 353 Developmental Biology 3
BIO 355-356 Biology of Microorganisms I-II 4-4
BIO 361 Bioinformatics 4
BIO 370 Evolution 3

Bachelor of Science Degree

BIO 430 Coral Reef Biology 4
BIO $460 \quad$ Cell and Molecular Biology II 4
BIO 465, $466 \quad$ Selected Topics in Biology 4
BIO $495 \quad$ Directed Independent Research (maximum 6 credits) 1-6
BIO 496 Internship/Field Studies (maximum 4 credits) 1-4
Any 200, 300, or 400 level chemistry, math, or physics course except MAT 232
Any CSC course except CSC 111 or CSC 119
Any ENV course
Any MBI or MSC course
SCI 100 (if taken as a freshman), The Caribbean: The Natural World
SCI 220 Introduction to Geographic Information System
STE 110 and/or STE 112

Mathematics Major

In addition to the general education requirements (see pp. 145-146), the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
FDS $100 \quad$ Freshman Development Seminar 1
SCI $100 \quad$ The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
B. Required courses in mathematics: Credits

MAT 215 Introduction to Number Theory 3
MAT 241-242 Introduction to Calculus and Analytic Geometry I-II 4-4
MAT 261 Linear Algebra 4
MAT 341-342 Intermediate Calculus I-II 3-3
MAT 362 Abstract Algebra I 3
MAT 397, $398 \quad$ Junior Mathematics Seminar I, II 1/2, 1/2
MAT $441 \quad$ Introductory Analysis I 3
MAT 497, 498* Senior Mathematics Seminar I, II 1,1
C. Six elective courses from the following are required:

Note: A cluster of four courses must be approved by your advisor
(see G: Suggested tracks)
Credits
MAT 233 Discrete Mathematics 3
MAT 301 Modern Geometry 3
MAT 325 Numerical Analysis 3
MAT $332 \quad$ Mathematical Statistics 3
MAT 344 Probability 3
MAT 346 Differential Equations 4
MAT 348 Complex Variables 3
MAT $352 \quad$ Mathematical Modeling 3
MAT 361 Bioinformatics 4
MAT $386 \quad$ History and Philosophy of Mathematics 3
MAT $442 \quad$ Introductory Analysis II 3
MAT 458 Topology 3
MAT $461 \quad$ Abstract Algebra II 3
MAT 465,466 Special Topics 3, 3
MAT 499
Approved Independent Study3

Bachelor of Science Degree

One approved upper level course in another discipline (See F)
D. Required courses in related fields:

Credits
CSC 117 Introduction to Programming 4
PHY 241-242** General Physics I-II 5-5
E. An additional 9 credits in science and mathematics are required from the following:

200 level or above biology courses
Any chemistry course except CHE 111-112
200 level or above marine biology or marine science courses
300 or 400 level mathematics courses
Any computer science course except CSC 111
300 or 400 level physics courses
F. The following are strongly recommended:

Credits
ECO 221 Introduction to Macro-economics 3
ECO 222 Introduction to Micro-economics 3
MAT 442 Introductory Analysis II 3
or MAT $461 \quad$ Abstract Algebra II 3
MAT 465,466 Special Topics 3, 3
PHY 311 Classical Mechanics 3
PHY 321 Electromagnetism 3
PHY 341 Modern Physics 3
SSC 327-328 Quantitative Research Methods in the Social Sciences 4-4
G. Suggested tracks:

Applied: For majors interested in applied mathematics in the physical and engineering sciences, actuarial sciences, or business

MAT 325 Numerical Analysis 3
MAT $332 \quad$ Mathematical Statistics 3
MAT $344 \quad$ Probability 3
MAT $346 \quad$ Differential Equations 4
MAT 348 Complex Variables 3
MAT $352 \quad$ Mathematical Modeling 3
One approved upper level course in another discipline (See F)
Teaching: For majors considering a career in secondary education Credits
MAT 233 Discrete Mathematics 3
MAT 301 Modern Geometry 3
MAT $332 \quad$ Mathematical Statistics 3
MAT 344 Probability 3
MAT $352 \quad$ Mathematical Modeling 3
MAT $386 \quad 3$
Graduate: For majors considering graduate study in mathematics Credits
MAT 348 Complex Variables 3
MAT 442 Introductory Analysis II 3

Bachelor of Science Degree

Credits

MAT 458	Topology	3
MAT 461	Abstract Algebra II	3

Concentration in Computer Science:
The following computer science courses are required. Nine of these credits will fulfill the required 9 additional credits in science and mathematics (see E).

Credits
CSC 118 Introduction to Programming II (C++) 4
CSC 197 Computer Science Seminar 1
CSC 239 Scientific Computing 2
CSC 242 Data Structures 4
CSC 317 Introduction to Programming III 3
The following courses are required. They serve as partial fulfillment of the six elective courses in mathematics (see C):

Credits
MAT 233 Discrete Mathematics 3
MAT 325 Numerical Analysis 3
MAT $332 \quad 3$
or MAT 348 Probability 3
CSC 352 Analysis of Algorithms (Approved upper-level course in another discipline)

Concentration in Computational Biology

Students earning the Bachelor of Science in mathematics may elect to complete a concentration in computational biology. This interdisciplinary concentration will prepare students to participate in new frontiers of research in which gigantic volumes of data are analyzed to seek answers to questions in molecular, medical, and environmental biology. The requirements to complete the concentration in computational biology include all of the requirements for the B.S. mathematics major.

Students must complete the following courses in partial fulfillment of the Section C mathematics electives requirement: (6 courses)

Credits
MAT $325 \quad$ Numerical Analysis 3
MAT 332 Mathematical Statistics 3
MAT 352 Mathematical Modeling 3
MAT/BIO/CSC 361 Bioinformatics 4
or MAT 346 Differential Equations 4
MAT 344
or MAT 233
Probability
3
Discrete Mathematics 3
Data Structures (the approved upper level course
in another discipline)
Students must complete the following courses. Nine of these credits will fulfill the Section E science and mathematics electives requirement: (5 courses)

CSC 118 Introduction to Programming II 4
BIO $245 \quad$ Principles of Genetics 4
BIO 223 Ecology 4
or BIO $360 \quad$ Cell and Molecular Biology I 4
or BIO 370 Evolution 4

Additional Courses
BIO 141-142 General Biology I-II
*SCl 497 may be taken in place of either MAT 497 or 498.
**Partially satisfies the general education requirement in mathematics and science.

Physics with Astronomy Authentic Research Experience (PAARE) Major

The Bachelor of Science in Physics with Astronomy Authentic Research Experience (PAARE) is a 4 -year degree for students who wish to specialize in physics and/or astronomy and who may pursue graduate studies. The degree is sufficiently general that students choosing to continue their graduate studies may do so in any field of physics.

In addition to the general education requirements or 18 credits of humanities and 12 hours of social sciences, the following courses are required:
A. Required courses in freshman studies (required for anyone admitted into the program with fewer than 24 credits):

Credits
SCI 100 The Natural World: The Caribbean 3
SSC 100 An Introduction to the Social Sciences: A Caribbean Focus 3
FDS $100 \quad$ Freshman Development Seminar 1
B. Required courses in physics: Credits

PHY 241, $242 \quad$ General Physics I-II 5,5
PHY 271 Astronomy I 3
PHY 311 Classical Mechanics I 3
PHY 321 Electromagnetism 3
PHY 341 Modern Physics 3
PHY 351 Modern Physics Lab 1
PHY 371 Astronomy II 3
PHY 397, $398 \quad$ Junior Science Seminar I, II 0.5, 0.5
PHY $411 \quad$ Thermal and Statistical Physics 3
PHY 441 Quantum Mechanics 3
PHY 481 Astronomy Lab I 1
PHY $482 \quad$ Astronomy Lab II 1
PHY 495 Directed Independent Research 1-4
PHY 496 Internship/Field Studies 1-4
PHY 497, $498 \quad$ Senior Science Seminar I, II 0.5, 0.5
C. Required courses in mathematics: Credits

MAT 143, 153* Pre-calculus Algebra and Trigonometry 4, 4
MAT 241, 242 Introduction to Calculus and Analytical Geometry I-II 4, 4
MAT $261 \quad$ Linear Algebra 4
MAT 325 Numerical Analysis 3
MAT 341, 342 Intermediate Calculus I-II 3, 3
MAT 346 Differential Equations 3
*A student may be exempted from MAT 143-153 by a qualifying examination.
D. Required courses in chemistry:

Credits
CHE 151-152 General Chemistry I-II 5-5

Bachelor of Science Degree

E. Required courses in computer science:

CSC 117 Introduction to Programming I 4
CSC 239 Scientific Computer Applications 2
F. Science electives: An additional 9 credits in science, mathematics, engineering, or computer science are required from the following:

Any selected topics in physics
Any biology course
200, 300, or 400 level chemistry course
200, 300 or 400 level mathematics course except MAT 232 and MAT 257
Any computer science course except CSC 111 and CSC 120
Any 200 level engineering course

Bachelor of Science Degree

MINORS

Computational Science Minor

Computational science (or scientific computing) is an interdisciplinary field that combines mathematical and computing methods for solving complex real-world scientific, financial or societal problems through modeling, simulation, optimization, or visualization methods. This computational science minor offers students opportunities to study and apply scientific and mathematical techniques in various application fields. The minor in computational science will prepare students to solve complex problems by completing computational based projects that require intensive computational processes and high-performance computing tools.

Note: Computational science or scientific computing should not be confused with computer science which is the study of the theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems.

In addition to the general education prerequisites, students must complete $23-26$ credits with an average grade of C or higher.

Required computational science courses: Credits
CSC 118 Programming II 4
CSC 239 Scientific computing 2
CSC 242 Data Structure 4
MAT 261 Linear Algebra 4
Select one of the following: Credits
MAT 325 Numerical Analysis 4
or
MAT $352 \quad$ Mathematical Modeling 4
At least 6 credits from the following: Credits
CSC 317 Programming III 3
CSC 361 Bioinformatics 4
CSC 465 Introduction to High Performance Computing* 3
CSC 466 Selected Topics: Data Mining 3
CHE $341 \quad$ Physical Chemistry I 3
CHE $342 \quad$ Physical Chemistry II 3
MAT 325 Numerical Analysis** 4
MAT $346 \quad$ Differential Equations 4
MAT 352 Mathematical Modeling** 3
BIO 465, CHE 465, Selected Topics in Computational Science*** MAT 465, MBI 465, or PHY 4652-4

BIO 495, CHE 495, Directed Independent Research in Computational Science*** MAT 495, MBI 495, or PHY 4952-4
*Computer science majors are required to take Introduction to Hi Performance Computing: Parallel and Distributed Computing CSC 465
** Cannot be used to satisfy both the required and the elective section of the minor.
*** As approved by the chair of Computer and Computational Science in consultation with the chair of the of the department of the student's major. Approval will be based on the coherence of the selected courses in preparing the student for work in a particular interdisciplinary area.

Bachelor of Science Degree

Data Science Minor

The minor in data science affords students the opportunity to extend their quantitative abilities as a route to a deeper understanding of their chosen field and to greater marketability after graduation. Students must successfully complete 18-20 credits from the following list of courses.
A. Required core data science courses:
Credits

CSC/SCI 230	Data Science I	3
CSC 239	Scientific Computer Applications	3
CSC/IST/SCI 435	Data Science II	3

CSC/IST/SCI 435 Data Science II 3
B. Required statistics courses. The student must choose any one of the following courses: Credits

DSC 325 Statistics for Management Decisions 3
MAT 235 Introductory Statistics with Applications 4
MAT 245 Statistics for the Life Sciences 4
C. Required data application courses. The student must choose one of the following courses: Credits

BIO/CSC/MAT 361** Bioinformatics 4
CJU/SCI/SSC 220* Introduction to Geographical Information Systems 3
CSC 245 Databases and Information Retrieval 4
CSC 466 Data Mining 3
DSC $410 \quad$ Quantitative Methods Introduction 3
IST 305 Database Design and Implementation 3
MAT $352 \quad$ Mathematical Modeling 3
SSC 228 Quantitative Research Methods 3
D. A data science related project completed in one of the following courses:*** Credits

BUS 499 Independent Study 3
CSC/IST/SCl 495 Directed Independent Research 3
IST 425 Project Management and Development II 3
MAT 499 Independent Study 3
MKT 430 Strategic Marketing 3

* The same course is co-listed as CJU 220, SCI 220, or SSC 220.
** The same course is co-listed as BIO 361, CSC 361, or MAT 361.
${ }^{* * *}$ Department chairs are responsible for ensuring that projects relate to data science.

Environmental Science Minor

The environmental science minor affords students the opportunity to learn about environmental science as a complement to their chosen major or to develop independent interest in the area. In addition to the general education prerequisites, students must complete (with a grade of C or higher) at least 18 credits.
A. Required courses:

Credits
CJU/SSC/SCl 220 Introduction to Geographic Information Systems 3
ENV 200 Introduction to Environmental Science and Policy 3
ENV 365 or $366 \quad$ Topics in Environmental Science 4
MAT 235
Introductory Statistics with Applications 4
or MAT 245
Statistics for the Life Sciences
B. Two classes, chosen from the following, one of which must be at the 300 level:

BIO/MBI 220 Marine Invertebrate Zoology 5
BIO 223
Ecology
4
BIO 224
Population Biology 4
BIO 349
Aquatic Plant Biology 4
BIO $350 \quad$ Terrestrial Plant Biology 4
BIO 370 Evolution 3
$\mathrm{BIO} / \mathrm{MBI} 430 \quad$ Coral Reef Biology 4
BIO 495 Directed Independent Research 1-6
BIO 496 Internship/Field Studies \quad 1-4
CHE 251
Quantitative Analysis 4
CHE 252 Instrumental Analysis 4
CHE 253 \&/or 254 Organic Chemistry I-II 5,5
CHE 348 Biochemistry
5
COM 325 Web Publishing
4
DSC 325 Statistics for Management Decisions 3
ENG 300
GOG 232
Scientific Writing
3
Geography of Caribbean 3
MAT 332
Mathematical Statistics 3
MAT 352
Mathematical Modeling 3

MAT/BIO/CSC 361

Bioinformatics
4
MBI 222
MBI 424
Ichthyology
4
MSC 239
Marine Ecology
4
MSC 465 or 466
Oceanography 4

PHY 211/212
PHY 241 \&/or 242
Selected Topics (must be approved) 1-4

SCl 200
Intro to Physics I-II
4,4
General Physics I-II 5,5

SCl 210 - 3
SCl 301 Application of Principles from the Natural World 4 3
SSC 327 \& 328 Quantitative Research Methods 4

Health Science Minor

The health science minor is an interdisciplinary minor that is housed in the College of Science and Mathematics. Courses from a variety of UVI's colleges of schools help to make this minor accessible to students in most of the University's degree programs. With this goal in mind a wide range of courses will count towards the electives of this minor in addition to the required courses in psychology, biology and nursing. Students graduating with a health science minor will be prepared for a wide-range of career options in health fields that will depend on their major field of study or continuing secondary education.

Prospective Students should be aware: As currently structured, entry-level courses can be completed on either campus, but the minor will need to be completed on the Orville E. Kean Campus. Students must complete the health science minor required and elective courses with a grade of C or higher.
A. Required health science courses:

Credits
NUR 100 Medical Terminology 1
NUR 201 Consumer Health 3
NUR $310 \quad 3$
PSY/SOC 241 Social Determinants of Health and Disease 3
SCl 305
Biology of Health and Disease

Bachelor of Science Degree

B. Seven credits, minimum of two classes, chosen from the following courses, one of which must be at the 300-level:

ACC 342 Managerial Accounting 3
ACC 442 Auditing 3
BIO 151 or 261 Human Anatomy and Physiology I 4
BIO 152 or 2624
BIO 301 Microbiology for Health Sciences 4
BIO 355 Biology of Microorganisms 4
BIO 495 Directed Independent Research 1-4
BIO 496 Internship/Field Studies (Approved* health science topic) 1-4
CHE 251 Quantitative Analysis 4
CHE 252 Instrumental Analysis 4
CHE $254 \quad$ Organic Chemistry I-II 5
CHE 348 Biochemistry 5
CIS $310 \quad$ Advanced Business Software 3
CIS $357 \quad$ Business Information Systems 3
COM 325 Web Publishing 4
CSC 245 Databases and Information Retrieval 3
DSC 325 Statistics for Management Decisions 3
ENG 300 Scientific Writing 3
HRM 243 Front Office Management 3
MAT 235 Mathematical Statistics 3
MAT/CSC/BIO 361 Bioinformatics 4
PSY 332 Industrial Organizational Psychology 3
PSY 350 Drugs, Behavior, and Society 3
SSC $327 \quad$ Quantitative Research Methods 4
SSC $328 \quad$ Quantitative Research Methods 4
----- 496 Approved* Internship course 1-4

* Appropriateness of Internship or Directed Independent Study topics is determined by the director of the health science minor or chair of biological sciences.

Mathematics Minor

The minor in mathematics affords students the opportunity to extend their quantitative abilities as a route to deeper understanding of their chosen field and to greater marketability after graduation. Students must complete at least 21 hours in mathematics beyond the level of introductory calculus (MATH 241-242) to be distributed as follows:
A. Required mathematics courses:

Credits
$\begin{array}{lll}\text { MAT } 261 & \text { Linear Algebra } & 4\end{array}$
MAT 341 Intermediate Calculus I 4
MAT 342 Intermediate Calculus II 4
B. At least 9 credits to be chosen from the following list:

Credits
$\begin{array}{lll}\text { MAT } 215 & \text { Introduction to Number Theory } & 3\end{array}$
MAT 233 Discrete Mathematics 3
MAT 301 Modern Geometry 3
MAT $325 \quad$ Numerical Analysis 3
MAT 332 Mathematical Statistics 3
MAT 344 Probability 3
MAT $346 \quad$ Differential Equations 4
MAT 348 Complex Variables 3

Bachelor of Science Degree

MAT 352 Mathematical Modeling 3
MAT 361 Bioinformatics 4
MAT 362Abstract Algebra I3
MAT 386History and Philosophy of Mathematics3
MAT 441Introductory Analysis I3
MAT 442Introductory Analysis II3
MAT 458Topology3
MAT 461
Abstract Algebra II3
MAT 465, 466 Special Topics 3,3
MAT 499 Approved Independent Study 1-3

Bachelor of Science Degree

CERTIFICATE

Applied Computer Science (ACS) Technology

The Applied Computer Science Technology Certificate provides practical knowledge and experience to ensure success for entry level technology-related employment requiring essential software, hardware, operating systems, and networking skills. ACS Tech is a two-semester, accelerated program that is ideally suited for non-traditional and part-time students: 3 courses and 8 credit hours the first semester; 2 courses and 7 credit hours the second semester. A virtual laboratory allows students to apply ACS Tech concepts in an authentic hands-on environment. Course concepts and the virtual lab can be extended as an optional preparation for relevant, industry-recognized credentials (e.g., CompTIA Network+, Microsoft Certified Professional, Linux LPI Certification). Should a student choose to continue with a two-year or four-year degree, eleven (11) credit hours from the ACS Tech program may be transferred to satisfy elective or required courses.

Students must complete the following fifteen (15) credits with a passing grade in each course. Credits

CSC 110 Introduction to Programming and Problem Solving 3
CSC 235 ACS Virtual Technology Lab 1
CSC 241 Introduction to Computer Architecture and Systems 4
CSC 243 Digital Communications and Networks 4
CSC 255 Operating System Deployment Best Practices 3

Biomedical Laboratory Sciences

Biomedical laboratory scientists are responsible for the technical work in clinical and research laboratories, analysis of biological samples, quality assurance of analytical methods and test results, maintenance of complex technological equipment and development, standardization and adaptation of new methods. The certificate program in biomedical laboratory science is a unique and exciting combination of training in health science and technology to understand and utilize future scientific and technological advances in biomedical laboratory science. Individuals completing the program will be prepared for opportunities in medical laboratories inside and outside hospitals, private companies, academic institutions, and others.

Required core courses:

BIO 141	General Biology	4
CHE 112	Principles of Chemistry for the Life Sciences	3
CHE 112L	Principles of Chemistry for the Life Sciences Laboratory	1
BIO/CHE 230	Professionalism in Biomedical Science	1
BIO/CHE 241	Methods in Biomedical Science I	4
BIO/CHE 242	Methods in Biomedical Science II	4
CSC/SCI 230	Data Science I	3

Data Science

The certificate program enables students with a degree or equivalent work experience to add data science to their skill set offering, making them more valuable to their current employer or more attractive to potential employers. The certificate provides practical knowledge and handson experience to prepare for entry-level data science or analytics employment. The certificate will prepare students to support an analytics team in identifying, building, and evaluating

Bachelor of Science Degree

models. The courses include curriculum developed with practitioners, many of whom offer hands-on training opportunities to ensure students learn skills that support workforce needs.
A. Required core data science courses: Credits

CSC/SCI 230 Data Science I 3
CSC/IST/SCl 435 Data Science II 3
B. The student must choose one of the following statistics courses: Credits

DSC 325 Statistics for Management Decisions 3
MAT 235 Introductory Statistics with Applications 4
MAT 245 Statistics for the Life Sciences 4
C. A final data science project is completed in one of the following courses. This course is to be taken during the last semester. *

Credits
----- $495 \quad$ Directed Independent Research 3
BUS 499 Independent Study 3
MAT 499 Independent Study 3

* The final data science project completed must be approved by faculty with respective department chairs to ensure projects relate to data science.

[^0]: *Requirement of the Freshman-Year Program for all students matriculating into the University with fewer than 24 credits.
 ${ }^{* *}$ A student exempted from College Algebra with Applications or Precalculus Algebra by a qualifying examination must take one semester of a more advanced mathematics course.

